Navigating the transcriptional roadmap regulating plant secondary cell wall deposition
نویسندگان
چکیده
The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.
منابع مشابه
MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis.
It has been proposed that the transcriptional regulation of secondary wall biosynthesis in Arabidopsis is controlled by a transcriptional network mediated by SND1 and its close homologs. Uncovering all the transcription factors and deciphering their interrelationships in the network are essential for our understanding of the molecular mechanisms underlying the transcriptional regulation of bios...
متن کاملSignaling, transcriptional regulation, and asynchronous pattern formation governing plant xylem development
In plants, vascular stem cells continue to give rise to all xylem and phloem cells, which constitute the plant vascular system. During plant vascular development, the peptide, tracheary element differentiation inhibitory factor (TDIF), regulates vascular stem cell fate in a non-cell-autonomous fashion. TDIF promotes vascular stem cell proliferation through up-regulating the transcription factor...
متن کاملDissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.
Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcr...
متن کاملA battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis.
SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a master transcriptional switch activating the developmental program of secondary wall biosynthesis. Here, we demonstrate that a battery of SND1-regulated transcription factors is required for normal secondary wall biosynthesis in Arabidopsis thaliana. The expression of 11 SND1-regulated transcription factors, namely, SND2, SND3, MYB103, M...
متن کاملPtoMYB92 is a Transcriptional Activator of the Lignin Biosynthetic Pathway During Secondary Cell Wall Formation in Populus tomentosa.
Wood is the most abundant biomass in perennial woody plants and is mainly made up of secondary cell wall. R2R3-MYB transcription factors are important regulators of secondary wall biosynthesis in plants. In this study, we describe the identification and characterization of a poplar MYB transcription factor PtoMYB92, a homolog of Arabidopsis MYB42 and MYB85, which is involved in the regulation o...
متن کامل